Warum Sie einen KI-Berater brauchen? Damit Sie die richtigen Prioritäten im Unternehmen setzen, auf die man teils aufgrund von Betriebsblindheit nicht käme.
Denn sonst legen Sie vielleicht im Rahmen von KI-Einführungsprozessen die „schönen Aufgaben“ in die Hände der KI, während die Drecksarbeit an der menschlichen Belegschaft hängenbleibt.
Oder bildlich gesprochen: Die KI übernimmt Klönschnack und Kaffee trinken, während Ihre Teams ob repetitiver Quatscharbeit mürbe werden – statt umgekehrt.
KI-Berater: Mein Ansatz als Freelancer
Als Freelance KI-Berater unterstütze ich Sie plattformunabhängig und agil bei (generativen) KI-Projekten mit den Schwerpunkten Marketing und Kommunikation. Als Creative Director und Marketingberater begleite ich Sie von der Use-Case-Findung über das Prompting mitsamt Outputqualitäts-Optimierung bis zum Roll-out.
Die erste Tugend ist dabei:
Demut
Täglich gibt es in der unüberschaubar gewordenen Welt der KI Neuerungen, die selbst die Vollprofis überraschen. So passiert es mal eben, dass innerhalb einer Woche ein halbes Dutzend neuer Sprachmodelle (LLMs) auf den Markt kommen, die dann innerhalb weniger Tage von Dritten weiteroptimiert werden. Wie gut diese LLMs dann sind im echten Geschäftsleben sind, muss man für sich selbst testen.
Kurz gesagt: Es ist nicht möglich, tagesaktuell am Ball zu bleiben. Das bedeutet, dass jegliches Wissen veraltet sein könnte. Deswegen sollte man mit Demut an die Sache rangehen und grundsätzlich davon ausgehen, dass man nicht auf dem aktuellesten Wissensstand ist. Folge: Man muss sich täglich frisch aufschlauen.
Skeptisch sollte man zudem bei Jubel-Meldungen von Anbietern und Influencern sein, da nicht jeder Hype eine solide Grundlage hat.
Fragen stellen
Zu Beginn eines Projekts in der KI-Beratung sollte eine große Fragerunde stehen:
- Was will man im Unternehmen erreichen bzw. optimieren? Welchen Nutzen bzw. Mehrwert soll die hochverehrte Kundschaft haben? Das geht bspw. mittels dem Formulieren von User Stories.
- Was verspricht man sich im Unternehmen davon? Sind die Erwartungen realistisch?
- Gibt es automatisierbare Themen bzw. Prozesse, die man im Unternehmen nicht auf dem Schirm hat?
- Wenn im Rahmen des Projekts Tools entwickelt werden: Wer wird damit arbeiten? Sind die Leute mit im Boot? Werden die Leute mitziehen?
Aufgaben sezieren
Vom agilen Projektmanagement kennt man es: Zuerst sollte man Tasks erstellen – vielleicht in Form von User Stories – und diese anschließend nach dem Wert fürs Unternehmen priorisieren. Ein weiterer Faktor ist natürlich der zeitliche bzw. monetäre Aufwand.
Für KI-Projekte bedeutet das, dass im ersten Schritt die „Aufgabe“ verstanden werden muss. Viele Aufgaben in der Büroarbeit bestehen aus einer Abfolge von Schritten, über die man u.U. noch nie nachgedacht hat. Wie bei einem industriellen Automatisierungsprojekt muss man also die Gesamtaufgabe in Teilaufgaben zerstückeln und in eine automatisierbare Reihenfolge bringen.
Beispiel: Die User Story wäre „Ich will die Produkte in meinem Online-Shop mit Produkttexten befüllen.“ Diese Aufgabe besteht aus:
- Prüfung: Gibt es schon Basisinfos zum Produkt, bspw. im PIM-System? Wenn ja: Brauche ich eine Automatisierung / API, um die PIM-Daten nutzen zu können? Oder reichen mir die Infos auf der Website, dann geht’s über die URL?
Wenn es keine Basisinfos gibt: Woher könnte man sie bekommen? - Prozessmanagement: Kommt das Team mit einem Copy-and-Paste-Ansatz zurecht, um bspw. das PIM-System oder die Shopsoftware zu befüllen? Oder muss man’s automatisieren? Wie viele Teil-Handgriffe sind eigentlich nötig, und welche davon kann ich mit welchem Aufwand beschleunigen?
- Kosten-Nutzen-Bewertung: Hier lohnt sich ein Test mit ersten Test-Produkten. Wie hoch ist der Aufwand? Verkaufen sich die Produkte im Anschluss besser? Annahmen sind dafür da, sie dem rauen Wind der Realität auszusetzen.
- KI-Output-Qualität checken: Kann ich die KI unbeaufsichtigt arbeiten lassen, oder schleichen sich trotz des bestmöglichen Sprachmodells und perfektem Prompting noch Fehler ein? Dann muss man menschliche Nacharbeit einplanen; das ist immer sinnvoll.
- Entscheidungen treffen: Wie machen wir weiter? Automatisieren wir Pareto-Style 80 % der Aufgaben mit 20 % des Aufwands, oder gehen wir den Restweg zu 100 % Umsetzung – und das vielleicht mit teuer selbstgebauten Tools, die es nächste Woche vielleicht schon kaufbar gibt, ohne Entwicklungsaufwand?
KI nach Maß statt Missionierung
Unternehmenseigene Strukturen müssen mit den passenden KI-Angeboten gematcht werden. Das sollte man nicht mit der Brechstange machen.
Beispiel: Wenn Sie im Unternehmen stark auf Microsoft-365-Produkte setzen, wird Ihnen Google-KI wenig nutzen. Wenn Sie allerdings ein bunt zusammengewürfeltes Tool-Set haben, kann man auch flexibler an die Sache rangehen und sich ein KI-Stack zusammenbasteln.
Große (IT-)Beratungen hingegen haben ab und an Verträge mit Software-Großanbietern und verkaufen dann deren Lösungen. Man weiß es ja vorher: IT-Beratung A verkauft Lösung A, und IT-Beratung B verkauft Lösung B. Das kann durchaus ein sinnvoller Weg sein, sofern man ihn gehen will.
Agil entwickeln & testen
Ein team- oder unternehmensweiter Roll-out von KI-Produkten ist – im Vollausbau – teuer. Wie vermeidet man Fehlinvestitionen? Man priorisiert die Aufgaben, baut dafür Prototypen, testet diese und verfeindert sie. „Build – test – learn – repeat“ gilt auch hier.
Ein solcher Prototyp muss nicht voll in die IT eingebunden sein. Zum Test der Output-Qualität kann man ihn ja per Copy & Paste mit Daten füttern, anstatt an APIs und Dateizugriffen herumzudoktern. So was geht u.a. mit Anthropic oder Hugging Chat sehr gut.
Teams nicht überfordern
Bei erfolgreichen Change-Projekten, und im nichts anderes geht es hier, muss man die Leute mitnehmen. Zum Start und für den Roll-out sind deshalb KI-Workshops bzw. KI-Schulungen erforderlich.
Dabei kann sich dann wiederum rausstellen: Oh, blöd, unsere KI-Lösung ist zu kompliziert gedacht und gemacht, wodurch die Leute im Joballtag das Tool nicht nutzen können und werden.
Daraus kann sich dann ergeben, dass man nochmal zurück in die Werkstatt muss um das KI-Produkt zu überarbeiten.
KI Berater untersützen beim monitoren von Erfolgen
Wie bei allen Management-Prozessen sollte man auch im Rahmen von KI-Projekten KPIs definieren und diese monitoren. Diese KPIs können bspw. in den Dimensionen „Geld gespart“ oder „Produktivität gesteigert“ stattfinden.
Vor Schein-KPIs sollte man sich hüten: Wenn die Mitarbeiter stundenlang Zeit mit ChatGPT vertrödeln, und alle jubeln weil „die KI-Tools werden gut angenommen“, dann ist nix gewonnen.
Vernünftige KI Berater haben Geduld
Das Problem: Was tun? Nischige KI-Tools einkaufen und Prozesse umstellen? Oder warten, bis der Markt sich bereingt?
Die Lösung: Geduldig bleiben ist eine sinnvolle Tugend für KI Berater. Gute Ideen setzen sich ohnehin am Markt durch, und früher oder später wird es passende Produkte für die eigenen Anwendungen geben.
Oder die Großanbieter warten lange und speisen einen dann mit lieblosem Mist ab, aber auch das hilft: Dann weiß man, dass man etwas eigenes entwickeln muss.
Und der AI Act?
Das KI-Gesetz der EU, der AI Act, gilt seit 1. August 2024. Reguliert werden darin vor allem Anbieter bzw. Betreiber von KI-Systemen. Interessant ist, dass es massive regulatorische Erleichterungen für a) Forschung (sinnvollerweise) und b) Open Source gibt. Das könnte auch der Grund sein, warum u.a. Meta und Apple bei KI voll auf Open Source setzen. Es könnte sich als vorteilhaft herausstellen, sich als KI-Nutzer ebenfalls stärker auf quelloffene Angebote zu konzentrieren.
Ein weiterer rechtlicher Aspekt ist das Urheberrecht. Ein Beispiel: Das Generieren von KI-Bildern basiert auf Trainingsbildern. Elemente dieser Trainingsbilder tauchen in generierten Bilder auf. Wenn die Trainingsbilder nicht lizensiert wurden – in Deutschland gibt es keine „Fair Use“ Regelung, und CC-BY-SA bedeutet nicht Public Domain – dann sind die Resultate kontaminiert. Rechtssichere Bildgeneratoren gibt es zuhauf, man muss sie nur kennen und nutzen.
Über den Autor
Stefan Golling, Köln. Seit 2011 Freelance Creative Director, freier Texter, Creative Consultant und Online-Marketing-Berater mit Kunden von Mittelstand bis S&P 500. Erfahrung: 1998 mit Radiowerbung in Stuttgart gestartet, 2000 als Junior-Werbetexter zu Publicis München, 2001 Counterpart Köln, 2002 als Copywriter zu Red Cell Düsseldorf (heißt heute Scholz & Friends), dort ab 2007 Creative Director.
Freelance KI-Berater anfragen
Artikel zu ähnlichen Themen
- Öffentlichkeitsarbeit: Instrumente, die auch Digital und Social funktionieren
- Employer Branding Kampagnen: Darum solltest du viel mehr KPIs messen
- Recruiting: Vom Employer Branding zum Job Content Branding
- Dynamic Pricing, mal echt anschaulich
- Marketing Automation: 3fach gedacht, plus Customer Experience
- UX-Writing Crashkurs: Do’s und To do’s
- Social-Media-Management-Workflow? Mehrsprachig!
- Website-Audit-Planungshilfe
- KI: Machine Learning, Generative KI & RPA als Team
- Prompting aufgeschlüsselt: Vieles ist unsichtbar
- KI-Bildgenerierung: SVG, Diffusion oder GAN?
- LLMs verstehen: Token und Vektoren als Dashboard
- Claude: Was kann die KI von Anthropic?
- Performance Marketing: Leistung braucht Kreativität
- Marketingberatung: Erst das Rezept, dann ans Werk
- Social Selling: Hallo wer? Oder Ja gern?
- KI-Ethik und EU AI Act: Mitdenken ist Pflicht
- Customer Journey: Das Ziel ist das Ziel
- Chat GPT: Überblick, GPTs nutzen, Alternativen
- Google Gemini: KI mit Riesenhirn
- Statt Online Marketing Agentur: Flexibler mit Freelancern?
- TikTok für Unternehmen: 4 schnelle Tipps plus Ads-Tutorial
- KI-Videogenerator: Meine Testergebnisse
- KI-Bild generieren: und die Lizenz? Mit Vergleichstest!
- Hugging Chat Assistants: Alternative zu Custom GPTs
- Marketingmaßnahmen als 5-Dimensionen-Modell (mit Chat Bot)
- Hugging Face Spaces: der KI-Abenteuerspielplatz
- Chat GPT: Plus? Nein. Team? Ja. 2 Gründe
- Prompt Engineering: 5 Text-to-Text-Konzepte für Nicht-Nerds & Ausblick
- KI im Marketing: Turbo-Praktikanten und die Zukunft
Was macht ein KI Berater?
Ein KI Berater bzw. KI-Consultant oder AI Consultant ist ein Unternehmensberater, IT-Consultant – oder auch ein kreativer Freelancer. Er kann im Rahmen eines KI-Projekts beim Screening des KI-Marktes helfen, eine Roadmap erstellen, bei der Auswahl von Tools helfen oder bei entsprechender IT-Qualifikation auch (Cloud-)Tools implementieren. Ebenso gehören Schulungen zu den neuen Softwarelösungen zum Leistungsspektrum eines KI-Beraters.
Was macht ein KI Manager?
Ein KI Manager plant und steuert den Einsatz von KI im Unternehmen, ist also ein Interner. Da die Inhouse-KI-Kompetenzen selten ausreichen – allein schon aufgrund von fehlender Manpower – besteht die Rolle zu einem großen Teil aus dem Management von outgesourceten Leistungen, die man entweder bei KI Beratern oder IT-Beratungsunternehmen einkauft.
Die zu treffenden Management-Entscheidungen sind tricky, da die Folgen gewaltig sein können: Eine kluge Auswahl von KI entlastet die Mitarbeiter (bzw. spart Personalkosten ein) und bringt das Unternehmen auf Wachstumskurs, während Fehlentscheidungen a) hohe Kosten, b) lange Projektlaufzeiten und c) Erfolglosigkeit verursachen, gepaart mit möglichem Ärger mit dem Betriebsrat bei Problemen im Bereich KI-Ethik & mitbestimmungspflichtigen Themen.